721 research outputs found

    Editorial: Metastable Dynamics of Neural Ensembles

    Get PDF
    A classical view of neural computation is that it can be characterized in terms of convergence to attractor states or sequential transitions among states in a noisy background. After over three decades, is this still a valid model of how brain dynamics implements cognition? This book provides a comprehensive collection of recent theoretical and experimental contributions addressing the question of stable versus transient neural population dynamics from complementary angles. These studies showcase recent efforts for designing a framework that encompasses the multiple facets of metastability in neural responses, one of the most exciting topics currently in systems and computational neuroscience

    Prediction of Decisions from Noise in the Brain before the Evidence is Provided

    Get PDF
    Can decisions be predicted from brain activity? It is frequently difficult in neuroimaging studies to determine this, because it is not easy to establish when the decision has been taken. In a rigorous approach to this issue, we show that in a neurally plausible integrate-and-fire attractor-based model of decision-making, the noise generated by the randomness in the spiking times of neurons can be used to predict a decision for 0.5 s or more before the decision cues are applied. The ongoing noise at the time the decision cues are applied influences which decision will be taken. It is possible to predict on a single trial to more than 68% correct which of two decisions will be taken. The prediction is made from the spontaneous firing before the decision cues are applied in the two populations of neurons that represent the decisions. Thus decisions can be partly predicted even before the decision cues are applied, due to noise in the decision-making process. This analysis has interesting implications for decision-making and free will, for it shows that random neuronal firing times can influence a decision before the evidence for the decision has been provided

    Learning selective top-down control enhances performance in a visual categorization task.

    Get PDF
    We model the putative neuronal and synaptic mechanisms involved in learning a visual categorization task, taking inspiration from single-cell recordings in inferior temporal cortex (ITC). Our working hypothesis is that learning the categorization task involves both bottom-up, ITC to prefrontal cortex (PFC), and top-down (PFC to ITC) synaptic plasticity and that the latter enhances the selectivity of the ITC neurons encoding the task-relevant features of the stimuli, thereby improving the signal-to-noise ratio. We test this hypothesis by modeling both areas and their connections with spiking neurons and plastic synapses, ITC acting as a feature-selective layer and PFC as a category coding layer. This minimal model gives interesting clues as to properties and function of the selective feedback signal from PFC to ITC that help solving a categorization task. In particular, we show that, when the stimuli are very noisy because of a large number of nonrelevant features, the feedback structure helps getting better categorization performance and decreasing the reaction time. It also affects the speed and stability of the learning process and sharpens tuning curves of ITC neurons. Furthermore, the model predicts a modulation of neural activities during error trials, by which the differential selectivity of ITC neurons to task-relevant and task-irrelevant features diminishes or is even reversed, and modulations in the time course of neural activities that appear when, after learning, corrupted versions of the stimuli are input to the network

    Modeling Resting-State Functional Networks When the Cortex Falls Asleep: Local and Global Changes

    Get PDF
    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized” electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep” due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized networ

    Tracing evolution of spatio-temporal dynamics of the cerebral cortex:cortico-cortical communication dynamics

    Get PDF
    A considerable number of axons from neurons in one corti-cal area end up on other cortical areas. When one neuron in one cortical area sends an action potential to target neurons in other cortical areas, this is a realization of a cortico-cortical communication. Sensory perception, thinking, and planning of a specific behavior, all rely on the evolution of cortico-cortical communications. The action potentials change the membrane potentials in the target neurons and, in turn, may excite these neurons to produce action potentials and complex patterns of excitation and inhibition in their targets. We launched the special research topic of cortico-cortical communication dynamics to invite contributions that would cast light on such evolution of spatio-temporal action potential and membrane potential dynamics in the cerebral cortex. The contributions were theoretical models, human EEG, an

    Critical scaling of whole-brain resting-state dynamics

    Get PDF
    The online version contains supplementary material available at https://doi.org/10.1038/s42003-023-05001-y.Scale invariance is a characteristic of neural activity. How this property emerges from neural interactions remains a fundamental question. Here, we studied the relation between scale-invariant brain dynamics and structural connectivity by analyzing human resting-state (rs-) fMRI signals, together with diffusion MRI (dMRI) connectivity and its approximation as an exponentially decaying function of the distance between brain regions. We analyzed the rs-fMRI dynamics using functional connectivity and a recently proposed phenomenological renormalization group (PRG) method that tracks the change of collective activity after successive coarse-graining at different scales. We found that brain dynamics display power-law correlations and power-law scaling as a function of PRG coarse-graining based on functional or structural connectivity. Moreover, we modeled the brain activity using a network of spins interacting through large-scale connectivity and presenting a phase transition between ordered and disordered phases. Within this simple model, we found that the observed scaling features were likely to emerge from critical dynamics and connections exponentially decaying with distance. In conclusion, our study tests the PRG method using large-scale brain activity and theoretical models and suggests that scaling of rs-fMRI activity relates to criticality.A.P.-A. was supported by a Ramón y Cajal fellowship (RYC2020-029117-I) from FSE/Agencia Estatal de Investigación (AEI), Spanish Ministry of Science and Innovation. A.P.-A. and G.D. were supported by the EU Fet Flagship Human Brain Project SGA3 (945539). G.D. was supported by the Spanish Research Project AWAKENING (PID2019-105772GB-I00/AEI/10.13039/501100011033), financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). M.L.K. is supported by the Centre for Eudaimonia and Human Flourishing (funded by the Pettit and Carlsberg Foundations) and Center for Music in the Brain (funded by the Danish National Research Foundation, DNRF117).Peer ReviewedPostprint (published version
    corecore